Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
5.
Virulence ; 15(1): 2316438, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38362881

RESUMO

Animal models that can replicate clinical and pathologic features of severe human coronavirus infections have been instrumental in the development of novel vaccines and therapeutics. The goal of this review is to summarize our current understanding of the pathogenesis of coronavirus disease 2019 (COVID-19) and the pathologic features that can be observed in several currently available animal models. Knowledge gained from studying these animal models of SARS-CoV-2 infection can help inform appropriate model selection for disease modelling as well as for vaccine and therapeutic developments.


Assuntos
COVID-19 , Animais , Humanos , Virulência , SARS-CoV-2 , Modelos Animais de Doenças
8.
Virulence ; 15(1): 2289780, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38064414
9.
Vaccines (Basel) ; 11(12)2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38140210

RESUMO

Pichinde virus (PICV) can infect several animal species and has been developed as a safe and effective vaccine vector. Our previous study showed that pigs vaccinated with a recombinant PICV-vectored vaccine expressing the hemagglutinin (HA) gene of an H3N2 influenza A virus of swine (IAV-S) developed virus-neutralizing antibodies and were protected against infection by the homologous H3N2 strain. The objective of the current study was to evaluate the immunogenicity and protective efficacy of a trivalent PICV-vectored vaccine expressing HA antigens from the three co-circulating IAV-S subtypes: H1N1, H1N2, and H3N2. Pigs immunized with the trivalent PICV vaccine developed virus-neutralizing (VN) and hemagglutination inhibition (HI) antibodies against all three matching IAV-S. Following challenge infection with the H1N1 strain, five of the six pigs vaccinated with the trivalent vaccine had no evidence of IAV-S RNA genomes in nasal swabs and bronchoalveolar lavage fluid, while all non-vaccinated control pigs showed high number of copies of IAV-S genomic RNA in these two types of samples. Overall, our results demonstrate that the trivalent PICV-vectored vaccine elicits antibody responses against the three targeted IAV-S strains and provides protection against homologous virus challenges in pigs. Therefore, PICV exhibits the potential to be explored as a viral vector for delivering multiple vaccine antigens in swine.

12.
Virulence ; 14(1): 2231392, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37394841

RESUMO

Mammarenaviruses, a genus of the family Arenaviridae, are capable of infecting mammals and are primarily found in rodent reservoirs worldwide. Mammarenaviruses can be transmitted to humans through contact with infected rodents, and though infection is often asymptomatic, some members of this genus can cause viral haemorrhagic fever which has mortality rates ranging from 1% to 50%. These viruses are typically restricted geographically, based on the geographical range of their host reservoirs. Lymphocytic choriomeningitis virus (LCMV) was previously thought to be the only mammarenavirus found across the globe. However, recent discoveries of two novel human mammarenaviruses, Wenzhou Virus (WENV) and Plateau Pika Virus (PPV), in Asia and Southeast Asia show that mammarenaviruses are more widespread than previously thought. This editorial article aims to raise awareness about these emerging viruses, their genetic and ecological diversities, and clinical significance, and to encourage further study of these emerging viruses.


Assuntos
Arenaviridae , Animais , Humanos , Arenaviridae/genética , Vírus da Coriomeningite Linfocítica , Sudeste Asiático/epidemiologia , Ásia , Mamíferos
16.
J Med Virol ; 95(3): e28636, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36879534

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can lead to diverse clinical manifestations and pathologies that involve multiple organs. Even though the disease severity is manifested mainly in the respiratory tract, which is the primary target of SARS-CoV-2 infection, acute kidney injury in the form of acute tubular necrosis has also been noted in some COVID-19 cases. It is not entirely clear whether renal cells can be infected by the virus that might be involved in acute kidney disorder. In a recent publication by Radovic and colleagues, that has been selected as the editor's choice paper published in the Journal of Medical Virology, the authors provided strong histopathological and immunofluorescence evidence of SARS-CoV-2 infection and tissue injury of renal parenchymal and tubular epithelial cells, which strongly suggest an active viral replication in the kidney of some severe and fatal COVID-19 cases, and to a lesser extent, a potential role for innate immune cells in viral infection and renal disease pathogenesis.


Assuntos
Injúria Renal Aguda , COVID-19 , Humanos , COVID-19/patologia , SARS-CoV-2 , Rim/patologia , Injúria Renal Aguda/patologia , Células Epiteliais
17.
Front Immunol ; 14: 1127515, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36845108

RESUMO

Introduction: Tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) remains a major global health threat. The only available vaccine Bacille Calmette-Guérin (BCG) does not prevent adult pulmonary TB. New effective TB vaccines should aim to stimulate robust T cell responses in the lung mucosa to achieve high protective efficacy. We have previously developed a novel viral vaccine vector based on recombinant Pichinde virus (PICV), a non-pathogenic arenavirus with low seroprevalence in humans, and have demonstrated its efficacy to induce strong vaccine immunity with undetectable anti-vector neutralization activity. Methods: Using this tri-segmented PICV vector (rP18tri), we have generated viral vectored TB vaccines (TBvac-1, TBvac-2, and TBvac-10) encoding several known TB immunogens (Ag85B, EsxH, and ESAT-6/EsxA). A P2A linker sequence was used to allow for the expression of two proteins from one open-reading-frame (ORF) on the viral RNA segments. The immunogenicity of TBvac-2 and TBvac-10 and the protective efficacy of TBvac-1 and TBvac-2 were evaluated in mice. Results: Both viral vectored vaccines elicited strong antigen-specific CD4 and CD8 T cells through intramuscular (IM) and intranasal (IN) routes as evaluated by MHC-I and MHC-II tetramer analyses, respectively. The IN inoculation route helped to elicit strong lung T cell responses. The vaccine-induced antigen-specific CD4 T cells are functional, expressing multiple cytokines as detected by intracellular cytokine staining. Finally, immunization with TBvac-1 or TBvac-2, both expressing the same trivalent antigens (Ag85B, EsxH, ESAT6/EsxA), reduced Mtb lung tissue burden and dissemination in an aerosol challenge mouse model. Conclusions: The novel PICV vector-based TB vaccine candidates can express more than two antigens via the use of P2A linker sequence and elicit strong systemic and lung T cell immunity with protective efficacy. Our study suggests the PICV vector as an attractive vaccine platform for the development of new and effective TB vaccine candidates.


Assuntos
Vacinas contra a Tuberculose , Tuberculose , Animais , Humanos , Camundongos , Antígenos de Bactérias/genética , Antígenos Virais , Proteínas de Bactérias/genética , Citocinas/metabolismo , Estudos Soroepidemiológicos , Vacinas contra a Tuberculose/genética , Vacinas Sintéticas/genética , Linfócitos T/imunologia
19.
Virulence ; 14(1): 2176980, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36748841

RESUMO

Recent viral hemorrhagic fever (VHF) disease outbreaks caused by Ebola virus (EBOV) and Marburg virus (MARV) in West Africa are unique and alarming. The intents of this editorial are to highlight what is known about these viruses and the disease outbreaks that they cause in the African continent and elsewhere and to raise awareness of a related virus called Lassa virus (LASV) that causes endemic viral hemorrhagic fever infections and frequent outbreaks in West Africa.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Febres Hemorrágicas Virais , Humanos , Febres Hemorrágicas Virais/epidemiologia , Vírus Lassa , África Ocidental/epidemiologia , Surtos de Doenças , Doença pelo Vírus Ebola/epidemiologia
20.
Virulence ; 14(1): 2154188, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36599832

RESUMO

A new virus, named Langya henipavirus (LayV), has recently been identified in Shandong and Henan provinces in China and has so far infected 35 individuals between April 2018 and August 2021. It is closely related to other known henipaviruses (Nipah and Hendra viruses) that can cause up to 70% human case fatality. Even though LayV has not been shown to be fatal in humans and does not appear to be transmitted from human-to-human, it is an RNA virus with the capacity to evolve genetically in the infected hosts (e.g. shrews) and can infect humans (e.g. farmers who have been in close contacts with shrews). It is therefore important to be vigilant about this new viral outbreak.


Assuntos
Infecções por Henipavirus , Vírus Nipah , Humanos , Animais , Saúde Pública , Musaranhos , Infecções por Henipavirus/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA